2022-11-13 00:50来源:m.sf1369.com作者:宇宇
1. 专用公式:
若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),
自由度v=(行数-1)(列数-1)
列联表资料检验
同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表
滚子自转有局部自由度,滚子不计入活动构件数
编号1~9:活动构件数n =9
K"(或K)是虚约束,运动副仅取其一
A、B、C、D、H、L、M:各有1个转动副;E是复合铰链有2个转动副
G:有1个转动副+1个移动副,K:有1个移动副
低副数PL =7+2+2+1 =12
两齿轮齿合处1个高副,凸轮与滚子接触有1个高副,高副数PH=2
自由度F =3n -2PL -PH =3x9 -2x12 -2 =1
有1个原动件(齿轮1) ,原动件数=自由度F,机构有确定的运动
k为限制条件的个数。对于RSS,在得到OLS估计值时,对OLS施加了k+1个限制。这意味着,在给定残差中的n-(k-1)个,其余k+1个便是已知的:残差中只有n-(k+1)个自由度。
对于TSS,一共有n个数值,应该有n个自由度,但是其中一个自由地用于估计了均值
在统计学中,自由度指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中。
1、仔细观察待测机构,识别原动件、从动件机架等。分析运动特征,数清活动构建数目。
2、判断各构建间的运动副性质(即高副和低副)高副:构件之间通过点或线接触。低副;构件之间通过面接触。
3、选择投影面,徒手画出机构运动简图。确定待测位置。
4、精确测量运动件的尺寸,选择适当的比例尺绘制出正式的机构运动简图。
5、计算机构自由度 即 F=3n-2Pl-Phn:活动构件数Pl:低副数Ph;高副数。
6、制作表格,汇总。
1、物理学的自由度:
在力学里,自由度指的是力学系统的独立坐标的个数。
一般而言,N 个质点组成的力学系统由 3N 个坐标来描述。但力学系统中常常存在着各种约束,使得这 3N 个坐标并不都是独立的。对于 N 个质点组成的力学系统,若存在 m 个完整约束,则系统的自由度减为s=3n-m。
2、机械系统的自由度:
根据机械原理,机构具有确定运动时所必须给定的独立运动参数的数目(亦即为了使机构的位置得以确定,必须给定的独立的广义坐标的数目),称为机构自由度,其数目常以F表示。
F=3n-(2PL +Ph ) n:活动构件数,PL:低副约束数 Ph:高副约束数
3、统计学的自由度:
在统计学中,自由度(df)指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。
空间机构自由度的计算
也就是通过所有刚体的自由度数之和减去每一个运动副所约束的自由度数。这种方法的优点是,便于设计分析人员的分析与计算。尤其在平面机构的自由度分析上,通过计算者识别虚约束与局部自由度,几乎可以完成大部分机构的自由度计算。
然而对于空间机构来说,由于虚约束与局部自由度难以识别,而且机构本身的尺寸,约束的位置不同、机构的实际运动自由度会有很大的差异。该公式已经难以胜任空间机构的自由度计算任务。不过难以否认的是该公式在机械设计史上的突出贡献,很多经典的机构,机械装置都是基于该公式设计而成的
四格表资料检验
四格表资料的卡方检验用于进行两个率或两个构成比的比较。
1. 专用公式:
若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),
自由度v=(行数-1)(列数-1)
列联表资料检验
同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。
1. R*C 列联表的卡方检验:
R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。
2. 2*2列联表的卡方检验:
2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。
如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。
列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。
行×列表资料检验
行×列表资料的卡方检验用于多个率或多个构成比的比较。
1. 专用公式:
r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1]
2. 应用条件:
要求每个格子中的理论频数T均大于5或1<T<5的格子数不超过总格子数的1/5。当有T<1或1<T<5的格子较多时,可采用并行并列、删行删列、增大样本含量的办法使其符合行×列表资料卡方检验的应用条件。而多个率的两两比较可采用行X列表分割的办法。
列联表资料检验
同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。
1. R*C 列联表的卡方检验:
R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同
1、首先,打开excel表,鼠标点击要编辑的单元格;
2、点击菜单栏的公式——“插入函数”;
3、在函数对话框内输入“T.DIST.2T”,点击确定;
4、在x处输入数值A2;
5、在deg_freedom处输入B2自由度;
6、点击确定后,就获得了双尾t分布值。
四格表资料检验
四格表资料的卡方检验用于进行两个率或两个构成比的比较。
1. 专用公式:
若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),
自由度v=(行数-1)(列数-1)
列联表资料检验
同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。
1. R*C 列联表的卡方检验:
R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。
2. 2*2列联表的卡方检验:
2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。
如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。
列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。
行×列表资料检验
行×列表资料的卡方检验用于多个率或多个构成比的比较。
1. 专用公式:
r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1]
2. 应用条件:
要求每个格子中的理论频数T均大于5或1<T<5的格子数不超过总格子数的1/5。当有T<1或1<T<5的格子较多时,可采用并行并列、删行删列、增大样本含量的办法使其符合行×列表资料卡方检验的应用条件。而多个率的两两比较可采用行X列表分割的办法。
列联表资料检验
同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。
1. R*C 列联表的卡方检验:
R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。
2. 2*2列联表的卡方检验:
2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。
当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。
如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。
列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。
为什么从正态总体中抽取出的样本的方差服从χ2分布
在抽样分布理论一节里讲到,从正态总体进行一次抽样就相当于独立同分布的 n 个正态随机变量ξ1,ξ2,…,ξn的一次取值。
将 n 个随机变量针对总体均值与方差进行标准化得(i=1,…,n),显然每个都是服从标准正态分布的,因此按照χ2分布的定义,应该服从参数为 n 的χ2分布。
如果将中的总体均值 μ 用样本平均数 ξ 代替,即得,它是否也服从χ2分布呢?理论上可以证明,它是服从χ2分布的,但是参数不是 n 而是 n-1 了,究其原因在于它是 n-1 个独立同分布于标准正态分布的随机变量的平方和
FDIST(x,degrees_freedom1,degrees_freedom2);X 参数值。;Degrees_freedom1 分子自由度。;Degrees_freedom2 分母自由度。;函数 FDIST 的计算公式为 FDIST=P( F>x ),其中 F 为呈 F 分布且带有 degrees_freedom1 和 degrees_freedom2 自由度的随机变量。