2022-11-13 23:15来源:m.sf1369.com作者:宇宇
因为分块矩阵相乘也要满足前者的列数等于后者的行数,(E B)是1*2分块,而A是1*1分块,不能右乘的。
如果对于每个分块阵所找到的极大无关行向量组都位于不同的行,则第一行的秩为每个分块阵秩之和:若不能找到,则第一行的秩小于每个分块阵秩之和。再整个矩阵看成行分块,即一“列”的矩阵,同理,所以结论成立。
扩展资料:
设A是一组向量,定义A的极大无关组中向量的个数为A的秩。
在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。
A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。
特别规定零矩阵的秩为零。
因为右乘之后才能乘积为负一,才能生成逆矩阵
给定三阶方阵A:A={{a,b,c},{d,e,f},{p,q,r}},把第一行的第一个数字变成1,也就是用初等矩阵u来左乘A:u = {{1/a, 0, 0}, {0, 1, 0}, {0, 0, 1}}。
让第二行第一个数字变成0:把第三行乘以-d/p,加到第二行上,这个过程对应的初等矩阵是:v=I+(-d/p)*e_(2,3)= {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} + {{0, 0, 0}, {0, 0, -d/p}, {0, 0, 0}}。
再把第一行乘以-p,加到第三行上;对应的初等矩阵是:w=I+(-p)*e_(3,1)= {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}} + {{0, 0, 0}, {0, 0, 0}, {-p, 0, 0}}。
再把第三行第二个元素变成0:第二行乘以-(p (-b p + a q))/(a (e p - d q)),加到第三行上,对应的初等矩阵是——x=I+(-(p (-b p + a q))/(a (e p - d q)))*e_(3,2)
={{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}+ {{0, 0, 0}, {0, 0, 0}, {0, -(p (-b p + a q))/(a (e p - d q)), 0}},注意此时的x.(w.(v.(u.A)))是上三角矩阵。
1、一般行列式如果其各项数值不太大的话,可根据行列式Krj+ri和Kcj+ci不改变行列式值的性质将行列式化成上三角形和下三角形,用乘对角线元素的办法求行列式的值。
2、 如果行列式右上角区域处0比较多或通过交换行列式两行(或两列)能够将行列化成第七节课所说的分块形式(见下图)则用分块法计算行列式,即通过利用Krj+ri和Kcj+ci的性质和交换两行两列的方法将行列式化成分块形式计算行列式。
3、在通常情况下化行列式为上下三角形形式并不是一件很容易的事,除了一些特殊情况外(将在行列式计算笔记2中详细探讨)其解法可能是一件非常费力的事
可以设原分块矩阵的逆矩阵为X1、X2、X3、X4,则它与原矩阵的乘积为E、0、0、E,由此可得X1A=E、X1B+X2D=0、3A=0、X3B+X4D=E、从而可以得出逆矩阵X1、X2、X3、X4得值。
分块矩阵是一个矩阵,它是把矩阵分别按照横竖分割成一些小的子矩阵,然后把每个小矩阵看成一个元素,如果设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得AB=BA=E,则称B是A的逆矩阵,而A则被称为可逆矩阵。
觉得有用点个赞吧
矩阵的分块是处理阶数较高矩阵时常用的方法,用一些贯穿于矩阵的纵线和横线将矩阵分成若干子块,使得阶数较高的矩阵化为阶数较低的分块矩阵,在运算中,我们有时把这些子块当作数一样来处理,从而简化了表示,便于计算。
分块矩阵有相应的加法、乘法、数乘、转置等运算的定义,也可进行初等变换。 分块矩阵的初等变换是线性代数中重要而基本的运算,它在研究矩阵的行列式、特征值、秩等各种性质及求矩阵的逆、解线性代数方程组中有着广泛的应用
分块矩阵是一个 矩阵 , 它是把矩阵分别按照横竖分割成一些小的子矩阵 。 然后把每个小矩阵看成一个 元素 。 如果分块矩阵的非零子矩阵都在对角线上,就称为对角分块矩阵。
分块矩阵仍满足矩阵的 乘法 和 加法 。
任何方阵都可以通过相似变换, 变为约当标准型。 约当标准型是最熟知的分块矩阵。
利用分块矩阵可以简化很多有关矩阵性质的证明。
分块 相乘的时候要遵循的原则是只要A的列分块和B的行分块是一致的,就可以把小 矩阵 看成元素安乘法规律进行运算,不是每个矩阵相乘时划分矩阵都会变得简单,但是有的矩阵很有特点,比如其中会有单位矩阵啊,0矩阵啊等小举阵含在其中,一般把小矩阵归为单位矩阵或0矩阵以及其他的简单举证分成块是比较好的方法,
矩阵乘法交换律:方阵A, B满足AB=A+B. 则A, B乘积可交换,即AB=BA。
两个数相乘,交换因数的位置,它们的积不变,用字母表示a×b=bxa。将矩阵理解成线性变换,有一类矩阵就对应了旋转的坐标变换。假设你的初始状态是面朝床尾站立在床上,先向上转再向左转就是侧卧,先向左转再向上转就是横着仰卧,显然交换了之后的效果不一样。
相关信息:
乘法算式计算中,一般是按照从左到右的顺序进行计算。设AB 均为准对角矩阵。准对角矩阵是分块矩阵概念下的一种矩阵。即除去主对角线上分块矩阵不为零矩阵外,其余分块矩阵均为零矩阵,且对角线上的子块均可交换,则A B 可交换。
可以设原分块矩阵的逆矩阵为X1、X2、X3、X4,则它与原矩阵的乘积为E、0、0、E,由此可得X1A=E、X1B+X2D=0、3A=0、X3B+X4D=E、从而可以得出逆矩阵X1、X2、X3、X4得值。
分块矩阵是一个矩阵,它是把矩阵分别按照横竖分割成一些小的子矩阵,然后把每个小矩阵看成一个元素,如果设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得AB=BA=E,则称B是A的逆矩阵,而A则被称为可逆矩阵。
可以设原分块矩阵的逆矩阵为X1、X2、X3、X4,则它与原矩阵的乘积为E、0、0、E,由此可得X1A=E、X1B+X2D=0、3A=0、X3B+X4D=E、从而可以得出逆矩阵X1、X2、X3、X4得值。
分块矩阵是一个矩阵,它是把矩阵分别按照横竖分割成一些小的子矩阵,然后把每个小矩阵看成一个元素,如果设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得AB=BA=E,则称B是A的逆矩阵,而A则被称为可逆矩阵。