2022-11-22 11:18来源:m.sf1369.com作者:宇宇
首先高斯公式要求积分曲面是闭曲面,所以先取球面∑和三个坐标平面xoy,yoz,xoz组成闭曲面∑‘,注意在这三个坐标平面上,分别有x=y=0,y=z=0,z=x=0,因此被积函数xyz在这三个平面上的积分都等于0,故xyz在∑上的积分等于在∑’上的积分。根据高斯公式,P=Q=0,R=xyz,R'z=xy,故在∑‘上的积分=∫∫∫xydxdydz,积分区域为x^2+y^2+z^2=1和三个坐标平面在第一卦限内所围的立体。用球坐标计算这三重积分,由于x=rsinφcosθ,y=rsinΦsinθ,积分=∫sinθcosθdθ∫(sinφ)^3dφ∫r^4dr(其中r积分限0到1,φ和θ的积分限都是0到π/2),计算后等于1/15。
是一个重要的积分公式高斯公式又叫高斯定理:矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。是研究场的重要公式之一。公式为: ∮F.dS=∫△.Fdv 注:△--应为倒三角(由于输入的关系,打成正立三角形了)即是哈密顿算符 F、S为矢量
多项式函数:常函数、一次函数、二次函数、三次函数、四次函数。
基本初等函数:包括幂函数、指数函数、对数函数、三角函数、反三角函数和常数函数。
常用函数:实函数、双曲函数、隐函数、多元函数。
此外经常用到的函数还有高斯函数,阶梯函数和脉冲函数。
有的
英文名称:Gaussian
高斯函数的形式为:
其中 a、b 与 c 为实数常数 ,且a > 0.
c^2 = 2 的高斯函数是傅立叶变换的特征函数。这就意味着高斯函数的傅立叶变换不仅仅是另一个高斯函数,而且是进行傅立叶变换的函数的标量倍。
高斯函数属于初等函数,但它没有初等不定积分。但是仍然可以在整个实数轴上计算它的广义积分。
在计算机视觉中,有时也简称为高斯函数。高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:
(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.
(2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.
(3)高斯函数的傅立叶变换频谱是单瓣的.这一性质是高斯函数傅立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数傅里叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.
(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折中.
(5)由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.
在静电学中,表明在闭合曲面内的电荷之和与产生的电场在该闭合曲面上的电通量积分之间的关系。 高斯定律(Gauss' law)表明在闭合曲面内的电荷分布与产生的电场之间的关系。高斯定律在静电场情况下类比于应用在磁场学的安培定律,而二者都被集中在麦克斯韦方程组中。
因为数学上的相似性,高斯定律也可以应用于其它由平方反比律决定的物理量,例如引力或者辐照度。
英文名称:Gaussian
高斯函数的形式为:
其中 a、b 与 c 为实数常数 ,且a > 0.
c^2 = 2 的高斯函数是傅立叶变换的特征函数。这就意味着高斯函数的傅立叶变换不仅仅是另一个高斯函数,而且是进行傅立叶变换的函数的标量倍。
高斯函数属于初等函数,但它没有初等不定积分。但是仍然可以在整个实数轴上计算它的广义积分。
高斯函数的应用:
高斯函数的不定积分是误差函数。在自然科学、社会科学、数学以及工程学等领域都有高斯函数的身影,这方面的例子包括:
在统计学与机率论中,高斯函数是正态分布的密度函数,根据中心极限定理它是复杂总和的有限机率分布。
高斯函数是量子谐振子基态的波函数。
计算化学中所用的分子轨道是名为高斯轨道的高斯函数的线性组合(参见量子化学中的基组)。
在数学领域,高斯函数在厄尔米特多项式的定义中起着重要作用。
高斯函数与量子场论中的真空态相关。
在光学以及微波系统中有高斯波束的应用。
高斯函数在图像处理中用作预平滑核(参见尺度空间表示)。
设x∈R , 用 [x]或int(x)表示不超过x 的最大整数,并用{χ}表示x的非负纯小数,则 y= [x] 称为高斯(Guass)函数,也叫取整函数。(其中y={x}叫做小数部分函数,表示x的小数部分)
任意一个实数都能写成整数与非负纯小数之和,即:x= [x] + {χ}(0≤{x}<1)
就像概率里面的正态分布,高斯函数公式有两种表达方式a*exp(-((x-b)/2c)^2),和a*exp(-((x-b)/c)^2).没什么区别.c和2c都反映脉冲陡度.如果按a*exp(-((x-b)/c)^2)的公式,2lnc为波峰半高度时的宽度.相应的,如果按a*exp(-((x-b)/2c)^2)的公式,则以2ln2c表示波峰半高度时的宽度.
脉冲脉宽一般指从10%幅值开始计起,直到脉冲下降到10%幅值时的持续时间.
50%脉宽没听说过,应该是你看的资料有其它背景,这里就不好说了.比如是连续激发,就指占空比50%;比如只要求一个脉冲,但脉冲激发有一定条件,不一定能激发,就指的是50%激发概率.
高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。
他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。
高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典著作之一。
高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。
他还深入研究复变函数,建立了一些基本概念发现了著名的柯西积分定理。
他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。
1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。
其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。
用分段函数表示锯齿波的表达式是A=2a(ft-[ft])-a(f为频率,a为振幅)。方括号为向下取整函数,或高斯函数