2022-11-25 10:55来源:m.sf1369.com作者:宇宇
点估计就是点人数估计计划的意思
矩估计就是矩阵估计计算的意思
一个矩阵对应着一个线性变换,两矩阵相似其实就是说同一个空间的同一个线性变换在不同坐标系下的表示(矩阵)不同。
两矩阵相似就意味着存在可逆矩阵P使得P^-1AP=B则A与B相似其实就是说A和B相似于同一个对角阵(当然了,前提是可以相似对角化,也就是说,A和B都有列数个或行数个线性无关的特征向量)这个结论等价于A与B有完全相同的特征值
矩估计量的计算方法是θ=(x1+x2+x3++xn)/n,矩估计,即矩估计法,也称“矩法估计”,就是利用样本矩来估计总体中相应的参数,矩法估计原理简单,使用方便。
首先推导涉及感兴趣的参数的总体矩(即所考虑的随机变量的幂的期望值)的方程。然后取出一个样本并从这个样本估计总体矩。接着使用样本矩取代(未知的)总体矩,解出感兴趣的参数。从而得到那些参数的估计。
概率论与数理统计
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
二、随机变量及其分布
考试内容
随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数
的概念及性质,会计算与随机变量相联系的事件的概率。
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布及其应用。
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布。
三、多维随机变量及其分布
考试内容
多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布
考试要求
1.理解多维随机变量的分布函数的概念和性质。
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布。
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系。
4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义。
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。
2.会求随机变量函数的数学期望.
3. 了解切比雪夫不等式。
五、大数定律和中心极限定理
考试内容
切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。
2.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)、列维-林德伯格定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解产生 变量, 变量, 变量的典型模式;理解标准正态分布、 分布、 分布、 分布的上侧 分位数,会查相应的数值表。
3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布。
4.了解经验分布函数的概念和性质。
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法
考试要求
1.了解参数的点估计、估计量与估计值的概念。
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
对一阶矩的理解正确。两个量是依概率收敛的,所以令二者相等计算。样本的二阶矩用原点矩,老师在课程中有说明。在李良老师的课程中,基础、强化都有讲到求解二阶矩,建立两个方程:期望=样本矩阵,样本的二阶原点矩=总体的二阶原点矩,两个方程计算。总体的二阶矩是EX^2。求二阶矩时,写出总体矩和样本矩,令二者相等求解即可。
没有区别,矩估计值就是矩估计量,即用矩估计法测量得到的值,也称“矩法估计”,就是利用样本矩来估计总体中相应的参数。首先推导涉及感兴趣的参数的总体矩(即所考虑的随机变量的幂的期望值)的方程。然后取出一个样本并从这个样本估计总体矩。
它是由英国统计学家皮尔逊Pearson于1894年提出的,也是最古老的一种估计法之一。对于随机变量来说,矩是其最广泛。
矩估计量由来:
由辛钦大数定律知,简单随机样本的原点矩依概率收敛到相应的总体原点矩,这就启发我们想到用样本矩替换总体矩,进而找出未知参数的估计,基于这种思想求估计量的方法称为矩法。用矩法求得的估计称为矩法估计,简称矩估计。
矩法估计原理简单、使用方便,使用时可以不知总体的分布,而且具有一定的优良性质(如矩估计为Eξ的一致最小方差无偏估计),因此在实际问题,特别是在教育统计问题中被广泛使用。
但在寻找参数的矩法估计量时,对总体原点矩不存在的分布如柯西分布等不能用,另一方面它只涉及总体的一些数字特征,并未用到总体的分布,因此矩法估计量实际上只集中了总体的部分信息。
这样它在体现总体分布特征上往往性质较差,只有在样本容量n较大时,才能保障它的优良性,因而理论上讲,矩法估计是以大样本为应用对象的。
求矩估计量、矩估计值和极大似然估计值的详细过程:
1、根据题目给出的概率密度函数,计算总体的原点矩(如果只有一个参数只要计算一阶原点矩,如果有两个参数要计算一阶和二阶)。由于有参数这里得到的都是带有参数的式子。如果题目给的是某一个常见的分布,就直接列出相应的原点矩(E(x))。
2、根据题目给出的样本。按照计算样本的原点矩,让总体的原点矩与样本的原点矩相等,解出参数。所得结果即为参数的矩估计值。
矩估计量,即矩估计法,也称“矩法估计”,就是利用样本矩来估计总体中相应的参数。
首先推导涉及感兴趣的参数的总体矩(即所考虑的随机变量的幂的期望值)的方程。
然后取出一个样本并从这个样本估计总体矩。
接着使用样本矩取代(未知的)总体矩,解出感兴趣的参数。从而得到那些参数的估计。
矩估计值公式:E(X)=样本均值/样本均量,求矩估值的方法:最简单的矩估计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差。
矩法估计原理简单、使用方便,使用时可以不知总体的分布,而且具有一定的优良性质(如矩估计为Eξ的一致最小方差无偏估计),寻找参数的矩法估计量时,对总体原点矩不存在的分布如柯西分布等不能用。另一方面它只涉及总体的一些数字特征,并未用到总体的分布,因此矩法估计量实际上只集中了总体的部分信息,这样它在体现总体分布特征上往往性质较差,只有在样本容量n较大时,才能保障它的优良性,因而理论上讲,矩法估计是以大样本为应用对象的。
矩估计量的计算方法是θ=(x1+x2+x3++xn)/n,矩估计,即矩估计法,也称“矩法估计”,就是利用样本矩来估计总体中相应的参数,矩法估计原理简单,使用方便。