2022-12-12 05:14来源:m.sf1369.com作者:宇宇
1、先打开桌面上的EXCEL表格,如图所示。
2、打开EXCEL文件后,右键单击鼠标,在弹出的选框中点击设置单元格格式。
3、在“数字”选项卡中的分类列表选项中选择“文本”。
4、然后按“确定”按钮,如图所示。
5、这样再输入"3-2"等相关内容不会自动变成日期了。
在当前表内,选定单元格,横向分别输入各季节,在纵向单元格中分别输入星期。
选择插入公式的单元格,点击上方的公式选项卡。
在日期和时间函数中找到datedif,点击打开。
选择开始日期,
选择终止日期,
填写比较单位"M"
填写完成之后,点击确定。
最后就可以看到计算出来的结果
一、首先,打开Excel表格程序,可以看到此时输入日期全部变成“#”。
二、然后,在Excel程序主界面上方选择“数据”,点击“分列”,点击打开。
三、然后,在窗口中选择勾选“分隔符号”,点击打开。
四、然后,在窗口中勾选“其他”,点击下一步。
五、然后,在窗口中选择“日期”,点击下一步。
六、最后,回到Excel表格程序中,即可看到,日期显示正常,问题解决。
1、打开excel 2、选一单元格 3、键入=(等号) 4、键入要计算的算式:如:10^3 或POWER(10,3)(即十的三次方) 5、回车(得1000)即可得你要计算的指数函数值。
同比一般情况下是今年第n月与去年第n月比。同比发展速度主要是为了消除季节变动的影响,用以说明本期发展水平与去年同期发展水平对比而达到的相对发展速度。如,本期2月比去年2月,本期6月比去年6月等。其计算公式为:同比发展速度的公式应该改成:同比发展速度=本期发展水平/去年同期水平×100%;同比增长速度=(本期发展水平-去年同期水平)/去年同期水平×100%。在实际工作中,经常使用这个指标,如某年、某季、某月与上年同期对比计算的发展速度,就是同比发展速度。(本期同期代入相应单元格)
解决excel 自动设定日期,且之后日期不变的步骤如下:
1.首先选中A3,输入公式“=IF(B3="","",IF(A3="",NOW(),A3))”,A3作为自动生成输入数据的地址,B3为你输入数据或者编辑的地址。
2.选择【档案】选项卡下面的【选项】。
3.在打开的对话框中选择【公式】,勾选右边的【启用反复运算】(有的版本这里是【迭代运算】),然后点击右下角的确定关闭窗口。
4.回到excel表格,试试在B列在不同的时间输入销量数据,在A列自动生成了输入数据的时间,当你过几分钟回去修改刚输入的数据的时候,生成的时间不会因为修改数据而变化。这样就解决了excel 自动设定日期,且之后日期不变的问题了。
您好,很开心为您解答。大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
大数据应用
大数据虽然孕育于信息通信技术,但它对社会、经济、生活产生的影响绝不限于技术层面。更本质上,它是为我们看待世界提供了一种全新的方法,即决策行为将日益基于数据分析,而不是像过去更多凭借经验和直觉。具体来讲,大数据有以下作用。
1)对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。
云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值,大数据具有催生社会变革的能量。
2)大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。
在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生出一体化数据存储处理服务器、内存计算等市场。
在软件与服务领域,大数据将引发数据快速处理分析技术、数据挖掘技术和软件产品的发展。
3)大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”向“数据驱动”转变。
在商业领域,对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对,可以为商家制定更加精准有效的营销策略提供决策支持,可以帮助企业为消费者提供更加及时和个性化的服务。
在医疗领域,可提高诊断准确性和药物有效性。
在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
4)大数据时代,科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法,在大数据时代,研究人员可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
大数据涉及到各个行业,现在能学好大数据技术,加上自己持续的学习,高薪是肯定的。
用=year(now())取得当前年份用=year(d2)取得出生年份 (假如d2为出生年月)=year(now())-year(d2)就可以取得自动增长的年龄(把年龄这个字段的数据类型改为数值型,不保留小数位)前提,你的系统时间要对!!
输入前,首先设置单元格的格式为“文本”,然后输入 因为EXCEL 00:00这样的默认为时间的格式
SPSSTrends-用强有力的时间序列分析工具做更好的预测
SPSSTrends可以完成多种任务,包括:
生产管理:监控质量标准
数据处理:管理预测系统的效能
预算管理:执行销售预测
公共政策研究:探讨民意
预测,能为组织计划提供可靠的科学依据。利用SPSSTrends提供的一些新功能,无论您是入门新手还是专家老手都能利用时间序列数据在瞬间建立可靠的预测模型。SPSSTrends是与SPSS完全整合地附加模块,这样您不仅可以随意支配全部SPSS的功能,您也可受益于专为支持预测设计的新特性。
因为这些工具能帮助您提出并管理计划,就获利面而言,有着相当之影响。正确的预测可帮助组织获得较佳的预期收益。并有效控制人员配置、库存及相关成本;并更精确地管理商务过程-所有这些改进都为组织的健康发展奠定基石。然而,运用时间序列数据建立预测模型并非易事。
SPSSTrends克服了所有传统方法的缺点,为您提供高级建模技术。与电子表格程序不图,SPSSTrends使您能够在建立预测模型时使用高级统计方法,而无需具备专业的统计知识。
籍由SPSSTrends,入门新手能够建立综合考虑多变量的成熟准确的预测模型,经验老手可以利用它来验证自己的模型。SPSSTrends能够简单快捷地建立预测模型,这让您更快获得您所需要的信息。
高效地生成和更新模型
无需一次次地重复设定参数、重新估计模型等费力工作,利用SPSSTrends您可以提高整个建立预测模型过程的速度。您将节省数个小时、甚至是数天的宝贵时间,同时不失您所建立的预测模型的质量及可靠性。
利用SPSSTrends,您可以:
·建立可靠的预测,不论数据的大小或变量的多寡
·籍由自动选取适合模型及参数降低预测误差
·使您组织内多数人能够建立预测模型
·更有效率的更新及管理预测模型,让您有更多时间比较和探索与其它模型的差异
·产生专家级的经验预测值、预测模型类型、模型参数值及其它相关输出
·提供可理解的有意义的信息给组织决策者,以利于企业进行正确预测
在创建预测模型时,您具有极大的灵活性。例如,利用SPSSforWindows您可以轻易地把交易数据转换成时间序列数据,把现存的时间序列数据转换到最适合您组织计划需要的时间区间。
您可以为不同层级的地理区域或功能区,甚至每个产品线或产品,同时建立单独的预测模型,而不论基于哪个层次的预测。
归因于新增的ExpertModeler,SPSSTrends可帮助您:
·自动确定参数配适最佳的ARIMA或ExponentialSmoothing时间序列模型
·让您一次能够拟合数百条时间序列模型,无需一次次地重复相同的操作(每次只能为一个时间序列数据建立预测模型)
您还可以:
·输出模型到XML文件,当数据发生变动,无需重新设定参数或重新估计模型,您就可以实现新的预测
·模型以脚本形式写入到文件,以便自动更新
指导预测的初学者
如果您对建立时间序列模型不熟悉,或只是偶然应用时间序列模型,那么您将从SPSSTrends自动选择最适合的预测模型以及建模过程中为您提供指导的能力中受益匪浅。
利用SPSSTrends,您可以:
·生成可靠的模型,即使您不知道如何选择指数平滑的参数或ARIMA的阶数,或如何获得稳定的时间序列
·自动探查数据中的季节性、干扰事件、缺失值,并选择最恰当的模型
·探查离群值,防止它们对参数估计的影响
·图形展示数据、显示置信区间和模型拟合优度
模型建立和验证后,您可以把模型整合到微软Office应用程序中来实现结果共享。或者,利用SPSS的输出管理系统(OMS),以HTML或者XML的形式把输出发布到企业的局域网上来实现共享。您也能够以SPSS数据文件的形式保存模型,这使得您可以继续探察所建立模型的一些特征,比如模型拟合优度。
为预测专家提供控制
如果您是经验丰富预测专家,您将同样受益于SPSSTrends、。因为您能够更有效地创建时间序列,同时控制分析过程的主要方面。
例如,利用SPSSTrends的ExpertModeler您可以只在ARIMA模型或者只在ExponentialSmoothing模型中寻找最佳预测模型。您也可以不利用ExpertModeler而自行设定模型的每一个参数。同时,您也可以把ExpertModeler的结果作为初始的模型选择,或者用来检验自己建立的模型。
您也可以限制模型输出,如只输出拟合最差的模型-需要进一步检验的模型。这使您能够更快更有效地发现数据或模型中的问题
零售行业预测
Greg是一主要零售厂商的库存经理,他要负责5000多种产品,并利用SPSSTrends预测未来三个月每个产品的库存。SPSSTrends能够自动地为数千个变量建立预测模型,使得初始预测模型的建立仅仅需要几个小时,而不是几天。此外,还可以高效率地实现模型的更新。
由于公司的数据库每个月都以实际的销售数据更新,所以Greg把预测作为每月运行一次的批处理工作。通过这样做,他把新的数据整合并把预测期向前扩展一个月。
这样不需要重新估计模型就可以实现预测,极大地提高了处理效率。为了检验模型的能力,Greg利用批处理工作运行SPSS命令语法,来识别包含与由原始模型根据历史销售数据确定地置信区间相偏离的时间点的序列。对于这些序列,他运行另外一个批处理工作,来建立新的模型,以更好的拟合这些数据。
利用SPSSTrends,Greg实现了高效率高精度的预测,极大地提高了公司有效计划的能力。
系统需要
SPSSBase
其他系统需求根据平台的不同而异