主页 > 数据处理 > 高分,急迫:介绍滑动窗口如何实现流量控制

高分,急迫:介绍滑动窗口如何实现流量控制

2023-12-17 14:24来源:m.sf1369.com作者:宇宇

一、高分,急迫:介绍滑动窗口如何实现流量控制

说说我的一点看法:

TCP滑动窗口技术通过动态改变窗口大小来调节两台主机间数据传输。每个TCP/IP主机支持全双工数据传输,因此TCP有两个滑动窗口:一个用于接收数据,另一个用于发送数据。TCP使用肯定确认技术,其确认号指的是下一个所期待的字节。

假定发送方设备以每一次三个数据包的方式发送数据,也就是说,窗口大小为3。发送方发送序列号为1、2、3的三个数据包,接收方设备成功接收数据包,用序列号4确认。发送方设备收到确认,继续以窗口大小3发送数据。当接收方设备要求降低或者增大网络流量时,可以对窗口大小进行减小或者增加,本例降低窗口大小为2,每一次发送两个数据包。当接收方设备要求窗口大小为0,表明接收方已经接收了全部数据,或者接收方应用程序没有时间读取数据,要求暂停发送。发送方接收到携带窗口号为0的确认,停止这一方向的数据传输。

滑动窗口机制为端到端设备间的数据传输提供了可靠的流量控制机制。然而,它只能在源端设备和目的端设备起作用,当网络中间设备(例如路由器等)发生拥塞时,滑动窗口机制将不起作用。

二、EXCEL 不使用冻结,做出滚动条滚动一个窗口

这个想法很有创意,不过你采用冻结如何让窗口变成四个来显示不是太清楚.我个人感觉好像折分才能折为四窗口显示.若是拆分为四窗口,其实是一个工作表无论用什么方法我个人无法完成124区不动而3区动,看楼下有没有法

三、C# 数组滑动(滑动窗口)

队列么?.NET原生支持的.

            Queue q = new Queue(10);//10 个队列,FIFO

            for (int i = 0; i != 10; i++)

            {

                q.Enqueue(i);//先填满10个.

            }

            if (q.Count == 10)//如果填满了

            {

                q.Dequeue();//第一个出队列,如果不出队列,count就会变成11

                q.Enqueue(10);//进队列,Count仍保持10

            } 

            Queue q = new Queue();//类似的还有LIFO,NET中的实现是Stack,Pop弹栈和Push压栈

            for (int i = 0; i != 100; i++)

            {

                if (q.Count == 10)//超过10个出队列

                { 

                    q.Dequeue(); 

                }

                q.Enqueue(i);

            }

四、滑动窗口的基本信息

滑动窗口(Sliding window)是一种流量控制技术。早期的网络通信中,通信双方不会考虑网络的拥挤情况直接发送数据。由于大家不知道网络拥塞状况,同时发送数据,导致中间节点阻塞掉包,谁也发不了数据,所以就有了滑动窗口机制来解决此问题。参见滑动窗口如何根据网络拥塞发送数据仿真视频。图片是一个滑动窗口的实例:

滑动窗口协议是用来改善吞吐量的一种技术,即容许发送方在接收任何应答之前传送附加的包。接收方告诉发送方在某一时刻能送多少包(称窗口尺寸)。

TCP中采用滑动窗口来进行传输控制,滑动窗口的大小意味着接收方还有多大的缓冲区可以用于接收数据。发送方可以通过滑动窗口的大小来确定应该发送多少字节的数据。当滑动窗口为0时,发送方一般不能再发送数据报,但有两种情况除外,一种情况是可以发送紧急数据,例如,允许用户终止在远端机上的运行进程。另一种情况是发送方可以发送一个1字节的数据报来通知接收方重新声明它希望接收的下一字节及发送方的滑动窗口大小。 滑动窗口协议的基本原理就是在任意时刻,发送方都维持了一个连续的允许发送的帧的序号,称为发送窗口;同时,接收方也维持了一个连续的允许接收的帧的序号,称为接收窗口。发送窗口和接收窗口的序号的上下界不一定要一样,甚至大小也可以不同。不同的滑动窗口协议窗口大小一般不同。发送方窗口内的序列号代表了那些已经被发送,但是还没有被确认的帧,或者是那些可以被发送的帧。

下面举例说明,假设发送窗口尺寸为2,接收窗口尺寸为1:

分析:①初始态,发送方没有帧发出,发送窗口前后沿相重合。接收方0号窗口打开,等待接收0号帧;②发送方打开0号窗口,表示已发出0帧但尚确认返回信息。此时接收窗口状态不变;③发送方打开0、1号窗口,表示0、1号帧均在等待确认之列。至此,发送方打开的窗口数已达规定限度,在未收到新的确认返回帧之前,发送方将暂停发送新的数据帧。接收窗口此时状态仍未变;④接收方已收到0号帧,0号窗口关闭,1号窗口打开,表示准备接收1号帧。此时发送窗口状态不变;⑤发送方收到接收方发来的0号帧确认返回信息,关闭0号窗口,表示从重发表中删除0号帧。此时接收窗口状态仍不变;⑥发送方继续发送2号帧,2号窗口打开,表示2号帧也纳入待确认之列。至此,发送方打开的窗口又已达规定限度,在未收到新的确认返回帧之前,发送方将暂停发送新的数据帧,此时接收窗口状态仍不变;⑦接收方已收到1号帧,1号窗口关闭,2号窗口打开,表示准备接收2号帧。此时发送窗口状态不变;⑧发送方收到接收方发来的1号帧收毕的确认信息,关闭1号窗口,表示从重发表中删除1号帧。此时接收窗口状态仍不变。

若从滑动窗口的观点来统一看待1比特滑动窗口、后退n及选择重传三种协议,它们的差别仅在于各自窗口尺寸的大小不同而已。1比特滑动窗口协议:发送窗口=1,接收窗口=1;后退n协议:发送窗口>1,接收窗口=1;选择重传协议:发送窗口>1,接收窗口>1。 由于停等协议要为每一个帧进行确认后才继续发送下一帧,大大降低了信道利用率,因此又提出了后退n协议。后退n协议中,发送方在发完一个数据帧后,不停下来等待应答帧,而是连续发送若干个数据帧,即使在连续发送过程中收到了接收方发来的应答帧,也可以继续发送。且发送方在每发送完一个数据帧时都要设置超时定时器。只要在所设置的超时时间内仍未收到确认帧,就要重发相应的数据帧。如:当发送方发送了N个帧后,若发现该N帧的前一个帧在计时器超时后仍未返回其确认信息,则该帧被判为出错或丢失,此时发送方就不得不重新发送出错帧及其后的N帧。

从这里不难看出,后退n协议一方面因连续发送数据帧而提高了效率,但另一方面,在重传时又必须把原来已正确传送过的数据帧进行重传(仅因这些数据帧之前有一个数据帧出了错),这种做法又使传送效率降低。由此可见,若传输信道的传输质量很差因而误码率较大时,连续测协议不一定优于停止等待协议。此协议中的发送窗口的大小为k,接收窗口仍是1。 在后退n协议中,接收方若发现错误帧就不再接收后续的帧,即使是正确到达的帧,这显然是一种浪费。另一种效率更高的策略是当接收方发现某帧出错后,其后继续送来的正确的帧虽然不能立即递交给接收方的高层,但接收方仍可收下来,存放在一个缓冲区中,同时要求发送方重新传送出错的那一帧。一旦收到重新传来的帧后,就可以原已存于缓冲区中的其余帧一并按正确的顺序递交高层。这种方法称为选择重发(SELECTICE REPEAT),其工作过程如图所示。显然,选择重发减少了浪费,但要求接收方有足够大的缓冲区空间。

滑动窗口功能:确认、差错控制、流量控制。

相关推荐

车联网企业国内有哪些?

数据处理 2023-12-23

注册计量师-请教贴

数据处理 2023-12-19

逆光照片怎么处理

数据处理 2023-12-08