主页 > 数据处理 > fusionfx凝胶成像仪全称?

fusionfx凝胶成像仪全称?

2023-12-24 02:39来源:m.sf1369.com作者:宇宇

一、fusionfx凝胶成像仪全称?

VILBER Fusion FX6-XT(Spectra) 化学发光多色荧光及活体成像系统

二、荧光探针应用细胞成像,怎样找活体细胞

荧光探针应用细胞成像,怎样找活体细胞

为了提高活体细胞的显微图像分辨率虽然有多种方法,然而至今还未找到一种公认的处理所有活体细胞图像方法。本文采用伪彩色处理与多种图像处理方法结合处理50幅原始图像,并比较处理前后的卵母细胞图像 ,使用SPSS10.0统计软件包加以处理 ,探讨处理活体细胞是否能提高图像的分辨率及系统是否适用于活体细胞的图像处理 ,为今后临床和科研研究活体细胞创造条件。

三、荧光细胞动态分析系统是什么设备

这是日本ECI公司生产的一款全新的设备名为TAXIScan-FL,该设备室全新光学动态成像与活体细胞处理技术的完美结合。

该设备可以:1.可重复建立不同的化学趋化剂浓度梯度 2.数字记录的慢拍快放技术,保留实验动态影像 3.荧光成像实时拍摄细胞事件 3.自动聚焦并跟踪单个活体细胞动态演变过程 4.高通量试验载体可同时完成12例实验 5.无需暗室环境

该技术对 重要特点有:1.核心部件为硅基底芯片,其上嵌刻的水平通道可形成化学趋化因子浓度梯度 2.水平通道的深度精度小于悬浮细胞的直径,可精确到萎靡级别,其内可观测细胞形态学变化和增殖迁移过程 3.成像部件冷光CCD相机定位于观测平面以下,配有高性能透镜和同轴反照明装置 4.基于以上的革命性技术使实验只需100个甚至更少的细胞样本 5.根据实验具体要求自定义设置实验条件参数

主要有4大应用:1.细胞趋化实验 2.肥大细胞脱颗粒 3.化学趋化与钙流入同步成像 4.包吞和活性氧代谢

四、活体显微镜技术怎么给活细胞标记荧光

这两个显微镜是两个应用领域.荧光标记主要是做生物细胞或者蛋白,用荧光分子来标记某种生物分子或者探针,来达到对特定分子成像的目的.而电子显微镜(tem,sem)用电子术来超高分辨率的成像.两者原理截然不同,荧光分子的激发波长一般是紫外,而电子的波长都几纳米,不可能激发.除非lz能研发出来激发波长在电子术波长的荧光分子.

五、如何选择小动物活体荧光成像系统

小动物活体荧光成像技术在国内外得到越来越的普及应用,越来越多的科研人员希望能通过该技术来长时间追踪观察活体动物体内肿瘤细胞的生长以及对药物治疗的反应,希望能观察到荧光标记的多肽、抗体、小分子药物在体内的分布和代谢情况。

与传统技术相比,活体荧光成像技术不需要杀死动物,可以对同一个动物进行长时间反复跟踪成像,既可以提高数据的可比性,避免个体差异对试验结果的影响;又可以了解标记物在动物体内的分布和代谢情况,避免传统体外实验方法的诸多缺点;特别是还可以用原生态的方法来研究问题,即研究对象不需要先行标记,其后用荧光标记物来研究其行为,观察结果真实可靠。

那如何选择自己最合适的活体荧光成像系统呢?本文试从以下几点来进行分析。

1、 荧光标记的选择

活体荧光成像技术主要有三种标记方法:荧光蛋白标记、荧光染料标记和量子点标记。荧光蛋白适用于标记肿瘤细胞、病毒、基因等。通常使用的是GFP、EGFP、RFP(DsRed)等。荧光染料标记和体外标记方法相同,常用的有Cy3、Cy5、Cy5.5及Cy7,可以标记抗体、多肽、小分子药物等。量子点标记作为一种新的标记方法,是有机荧光染料的发射光强的20倍,稳定性强100倍以上,具有荧光发光光谱较窄、量子产率高、不易漂白、激发光谱宽、颜色可调,并且光化学稳定性高,不易分解等诸多优点。量子点是一种能发射荧光的半导体纳米微晶体,尺寸在100nm以下,它可以经受反复多次激发,而不像有机荧光染料那样容易发生荧光淬灭。

但是不同荧光波长的组织穿透力不同,如图1所示,各种波长的光对小鼠各种器官的透过率,都在波长>600nm时显著增加。而如图2所示,在650nm-900nm的近红外区间,血红蛋白、脂肪和水对这些波长的光的吸收都保持在一个比较低的水平。因而,选择激发和发射光谱位于650nm-900nm的近红外荧光标记(或至少发射光谱位于该区间),更有利于活体光学成像,特别是深层组织的荧光成像。(推荐文献: Nature Method, 2005, 2: 12 如何选择合适的荧光蛋白; Science, 2009, 324: 804 钱永建教授研究成果-近红外荧光蛋白,非常适合活体荧光成像)。

2、 活体荧光成像CCD的选择

选择适当的CCD镜头,对于体内可见光成像是非常重要的。如何选择活体荧光性价比最高的CCD呢?CCD有一些重要的参数:

1) CCD 像素。CCD像素决定成像的图片质量,像素越高,成像质量越好。由于荧光背景光较强,产生非特异性杂光干扰明显,需要配有高分辨率CCD的相机。

2) 前照式还是背照式CCD。一般而言,背照式CCD具有更高的量子效率,但是只有在检测极弱光信号优势明显(如活体生物发光成像),但在强光检测中与前照式CCD无本质差别,还更容易光饱和,并且其成本较高的弱势使其不属于荧光检测常规要素。

3) CCD 温度。制冷CCD分为两种:恒定低温制冷CCD和相对低温制冷CCD。恒定低温制冷CCD拥有稳定的背景,可以进行背景扣除;而相对低温制冷CCD由于背景不稳定,一般不能进行有效的背景扣除。CCD制冷温度越低,产生的暗电流越小,如图3所示,当制冷温度达到-29℃时,产生的暗电流已经低至0.03e/pixel/s。由于仪器自身产生的噪音主要由暗电流热噪音和CCD读取噪音组成,而目前CCD读取噪音最低只能降至2e rms;因而更低温度的CCD并不能明显的降低背景噪音,而成本却极大提高。

4) CCD 读取噪音和暗电流。CCD读取噪音和暗电流热噪音是成像系统产生背景噪音的主要因素,但是 在荧光成像中,最主要的背景噪音却是来自于荧光背景光。荧光成像信噪比的改善主要依赖于荧光背景光的有效控制和背景扣除技术(图4)。

3 、自发荧光的干扰

在活体荧光成像中,动物自发荧光一直困扰着科研工作者。在拥有激发光多光谱分析功能的活体成像系统出现以前,科学家们被迫采取各种方法来减少动物自发荧光,比如:采用无荧光素鼠粮饲养小鼠、使用裸鼠等。现在,拥有激发光多光谱分析功能的活体成像系统,能够轻松进行荧光信号的拆分,如图5,食物、膀胱、毛发和皮肤的自发荧光能够被有效的区分和剥离。激发光多光谱分析也可用于多重荧光标记检测,实现一鼠多标记,降低实验成本,并有效提高数据的可比性。

4、 荧光信号的准确定位

如图6所示,如果信号和靶标100%重合,这是科学家所追求的;但是,如果信号并不和靶标重合,而又误以为正确定位时,这是科学的噩梦。也许,一个错误定位的信号,比没有信号更加糟糕!

而同时拥有结构成像(如X光、MRI)和功能成像功能(如荧光、发光、同位素)的多功能活体成像系统,则让您摆脱困境,准确定位荧光信号。如图7所示,小鼠的X成像经过胃肠造影,可清晰地获得胃肠的形状和位置,将荧光信号和X光叠加,荧光和胃肠重合,可准确判定荧光定位在胃肠。

相关推荐

车联网企业国内有哪些?

数据处理 2023-12-23

注册计量师-请教贴

数据处理 2023-12-19

逆光照片怎么处理

数据处理 2023-12-08