2022-11-08 08:48来源:m.sf1369.com作者:宇宇
互联网的营销数据分析框架首先我能为用户提供怎样的服务?
用户需要我提供怎样的服务?
基于以上的互联网数据分析得出用户效应要怎样的产品?
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分
析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法
有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
我一直在问答谈运营技术。但是我认为,我最强在于数据跟视觉。
我认为,竞争到最后,运营跟运营之间的差距是从数据跟视觉开始区分的。
今天我们恰巧有时间来谈谈数据。
什么是数据分析思维?
数据分析思维,我认为是:把行为转化为数据-通过数据反推行为。
我举个例子:
你经常来我店铺购买姨妈巾。
你今天过来买姨妈巾,我就知道你大概一周内要来大姨妈。根据你购买的数量跟规格,我就能推断你一次大姨妈来多久,量大概多少。拉出来你半年的购买时间,我就可以推断你多久一次大姨妈是不是稳定。
如果有两个月没看到你购买姨妈巾了。。。那肯定是在两个月前,你男朋友的雨衣破了。
拉出来你男朋友的购买记录,我就知道,这个店铺的雨衣可能不合格。
为了验证他是不是不合格,我们去看看他半年内的复购率是不是远低于同行。
嗯,就因为你没有买姨妈巾,我怀疑这个店铺的雨衣不合格。
这就是数据分析的基本思维。
学会数据分析的基本思维,只能说,你勉强具备数据分析的可能。
那么做数据分析。需要明白几个东西。
1、数据样本:数据样本如果选择不合理,那么结果完全就是错误的。譬如我去抓取一个定位40岁大妈的姨妈巾店铺,要中国女性的姨妈周期,那根本就不科学好吗。这是青春期跟更年期的差异(此例子说明林慕白同学同样对妇科知识有所涉猎,欢迎广大适龄未婚女性知友来信咨询)。
实战中经常犯的例子是:平销转化率很好的单品,在聚划算卖不好。平销转化率不好的某些单品,聚划算反而会卖爆?为什么呢?想想,别问我,自己想。闹不明白就别尝试做电商的数据分析了。
2、数据选择:实际上我们会遇到很多的数据,但是有些数据不一定是我们想要的。就像我们这辈子会遇到很多很好的女生,但是我们很难明白,谁才能更好陪伴我们走完这一生。这个事情无法举例,我这边给一份试题:
现在我们店铺需要做优惠券促销,目的要提高客单价。
好,你告诉我要做满100减10元。
嗯,很好,那你现在告诉我,为什么是满100而不是满110,为什么是减10元而不是减20。拿出来你的数据。
嗯,不要问我怎么弄。也不要怀疑我是不是真的能分析出来,我真的能。
3、动态变化:我们一般最常用的,就是通过数据之间的变化,来分析可能出现一些什么问题或者变化。然而当一个数据量变化的时候,往往其他的数据也会发生变化。所以我们需要清晰什么数据之间是正相关,什么是反相关,他们之间的关系,在什么情况下是成立的。譬如正常收藏的比例跟转化率是正相关的,但是这几天他们是反相关的。转化率越掉,收藏率可能就越高。
我就谈谈数据分析的框架,我估计这些东西别人懒得讲,所以我讲一下。
至于什么工具看什么数据让别人讲吧。
码字有些累。谢谢
统计学 是第一,也是最重要的,包括统计学入门和多元统计分析 其次是 数据挖掘知识的书 上面的是理论 接下来是工具的选择和联系的,看你是选择sas、spss、stata、maltab、r。。。。根据你的不同软件选择,然后还要选择相应的工具与应用的书
各地数据建立发布服务器,在数据分析中心订阅全部数据,得到结果,建立数据仓库,采用OLAP工具做在线分析
我觉得数据分析关如果按照这5步走,还是比较接地气的,
第一步:明确分析的目标和框架
对一个分析项目,数据分析师应该明确业务目标是什么,初步选定哪些变量作为研究对象,从而为收集数据、分析数据提供清晰的目标,避免无意义的数据分析。同时对项目进行简单的评估,即时调整项目,构建出分析的思路与整体的框架。
第二步:数据收集
有目的的收集数据,是确保数据分析过程有效的基础。作为数据分析师,需要对收集数据的内容、渠道、方法进行规划。
1) 将识别的需求转化为具体的需求,明确研究的变量需要哪些数据。
2) 明确数据的来源渠道,数据的渠道主要有三种,一种是从公司系统数据库直接导出,另一种是通过网络爬虫软件(如集搜客GooSeeker)从网上抓取数据,也可以直接通过问卷的形式来收集数据。
第三步:数据处理
数据分析的中最重要的一步是提高数据质量,最好的数据值分析如果有垃圾数据将会产生错误结果和误导。因此,对收集到的数据进行加工、整理,以便开展数据分析,是数据分析前必不可少的阶段。这个过程是数据分析整个过程中最占据时间的,数据处理包括数据清洗、数据转化等处理方法。
第四步:数据分析
数据分析是指通过分析手段、方法和技巧对准备好的数据进行探索、分析,从中发现因果关系、内部联系和业务规律,通过数据建立模型,进而为商业提供决策参考。
到了这一阶段,为了驾驭数据、展开数据分析,需要涉及到工具与分析软件的使用。
要熟悉数据分析的方法,首先需要良好的统计基础,了解像方差、抽样、回归、聚类分析、判别分析、因子分析等数据分析方法的原理以及使用,才能灵活的根据业务目标以及已
有数据来选择分析的方法。
其次掌握几种常用的数据分析软件,如较基础的Excel、SPSS,或SAS、R等较高级的分析软件,保证分析工作的高效进行。
第五步:撰写分析报告
一份好的数据分析报告很重要,因为分析报告的输出是是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,好的分析报告应该有以下一些要点:
1) 要有一个好的框架,层次明了,让读者一目了然。
2) 每个分析都有结论,而且结论一定要明确。
3) 分析结论一定要基于紧密严禁的数据分析推导过程,不要有猜测性的结论。
4) 数据分析报告尽量图表化。
5) 好的分析报告一定要有解决方案和建议方案。