主页 > 数据处理 > 数据分析都包括什么?

数据分析都包括什么?

2022-11-12 13:19来源:m.sf1369.com作者:宇宇

一、数据分析都包括什么?

1. Analytic Visualizations(可视化分析)

不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

2. Data Mining Algorithms(数据挖掘算法)

可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

3. Predictive Analytic Capabilities(预测性分析能力)

数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。

4. Semantic Engines(语义引擎)

我们知道由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

5. Data Quality and Master Data Management(数据质量和数据管理)

数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

二、数据分析入门必备基础知识有哪些?

【导读】随着信息时代互联网的迅猛发展和大数据的兴起,许多人开始选择大数据产业。事实上,我们在进入数据分析或任何行业之前,都需要对自己有一个清晰的认识。那么,数据分析入门必备基础知识有哪些呢?今天就跟随小编一起来了解下吧!

1、数据分析的定义数据分析是指对大量有序或无序的数据进行信息的集中整合、运算提取、展示等操作,通过这些操作找出研究对象的内在规律。因此数据分析的目的就是揭示事物运动发展的规律,提高系统运行效率,优化系统作业流程,预测未来发展趋势。

2、数据分析的核心思路为了实现数据分析的目的与意义,刚入门的朋友要了解并遵循数据分析的三大核心思路,这个也是学习数据分析的必备基础知识。过去:对过去已经发生了的历史数据而言,它已经发生不可再改变。但是,历史数据依然很珍贵,通过对历史数据的总结分析,我们可以找到一些相关的不足或可优。

3、数据分析的应用领域数据分析应用的领域非常广泛,数据分析早已渗透各行业各业,尤其是互联网、电商和金融三大行业,在生产制造、生物医疗、交通物流、餐饮外卖、能源、城市管理、体育娱乐等领域也有比较多的应用。因此,我们的衣食住行,确确实实享受着数据分析带来的便利。

4、数据分析开发流程作为数据分析师,不管是完成临时性的小任务,还是战略性的大项目,在做数据分析时都要遵守数据分析开发流程。也许你未来不打算成为一名数据分析师,但是要想实现数据分析,掌握和熟悉数据分析开发流程也是很有必要的。

以上就是小编今天给大家整理分享关于“数据分析入门必备基础知识有哪些?”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

三、数据分析需要掌握那些基础知识?

具体如下:

1、数学知识。

数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。

对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。

2、分析工具。

对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。

对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。

数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:

1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。

2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。

3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。

四、数据分析师要掌握哪些基础知识?

1.Excel:会进行简单的数据处理,一般进入互联网公司会做一些报表,数据处理的工作。这类工作需要和其它技能相结合才有发挥空间,前景可以做行业数据分析。

2.编程和SQL:互联网公司基本都需要,因为互联网的追踪反馈系统很重要,数据分析师在这里扮演的角色就是一个技术―管理层之间的角色,略懂技术,但是也可以大概通过数据得出一点儿结论,给决策层做决策做出有价值的建议。

3.机器学习:这方面的人都是可遇不可求的,但是有一点儿需要搞清楚,人工智能和数据分析师是两个概念,只是使用的工具有交叉,数据分析师一般不会用特别复杂的算法,反而讲究的是快速使用模型并反馈。

关于数据分析师要掌握哪些基础知识,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

相关推荐

车联网企业国内有哪些?

数据处理 2023-12-23

注册计量师-请教贴

数据处理 2023-12-19

逆光照片怎么处理

数据处理 2023-12-08