主页 > 数据处理 > 2014年哪几所高校共建大数据分析出视平台?

2014年哪几所高校共建大数据分析出视平台?

2022-11-13 07:19来源:m.sf1369.com作者:宇宇

一、2014年哪几所高校共建大数据分析出视平台?

2014年中国科技大学,华中科技大学,江苏科技大学等高校共建大数据分析出视平台

二、大数据分析平台有什么作用?

1、数据驱动事务

经过数据产品、数据发掘模型实现企业产品和运营的智能化,然后极大的进步企业的全体效能产出。最常见的应用领域有根据个性化推荐技术的精准营销服务、广告服务、根据模型算法的风控反诈骗服务征信服务等。

2、数据对外变现

经过对数据进行精心的包装,对外供给数据服务,然后取得现金收入。市面上比较常见有各大数据公司利用自己把握的大数据,供给风控查询、验证、反诈骗服务,供给导客、导流、精准营销服务,供给数据开放渠道服务等。

3、数据辅助决议计划

为企业供给根底的数据计算报表分析服务。分析师能够容易获取数据产出分析报告指导产品和运营,产品司理能够经过计算数据完善产品功用和改进用户体验,运营人员能够经过数据发现运营问题并确定运营的策略和方向,管理层能够经过数据把握公司事务运营情况,然后进行一些战略决议计划。

三、大数据分析平台有哪些特点?

1. 高效分布式

有必要是高效的分布式体系。物联网发生的数据量巨大,仅我国而言,就有5亿多台智能电表,每台电表每隔15分钟采集一次数据,一天全国智能电表就会发生500多亿条记载。这么大的数据量,任何一台服务器都无能力处理,因而处理体系有必要是分布式的,水平扩展的。

2. 实时处理

有必要是实时处理的体系。互联网大数据处理,大家所了解的场景是用户画像、推荐体系、舆情分析等等,这些场景并不需求什么实时性,批处理即可。可是关于物联网场景,需求根据采集的数据做实时预警、决议计划,延时要控制在秒级以内。

3. 高牢靠性

需求运营商等级的高牢靠服务。物联网体系对接的往往是生产、经营体系,假如数据处理体系宕机,直接导致停产,发生经济有丢失、导致对终端顾客的服务无法正常供给。比方智能电表,假如体系出问题,直接导致的是千家万户无法正常用电。

4. 高效缓存

需求高效的缓存功用。绝大部分场景,都需求能快速获取设备当前状态或其他信息,用以报警、大屏展示或其他。体系需求供给一高效机制,让用户能够获取全部、或契合过滤条件的部分设备的最新状态。

5. 实时流式核算

需求实时流式核算。各种实时预警或猜测现已不是简单的根据某一个阈值进行,而是需求经过将一个或多个设备发生的数据流进行实时聚合核算,不只是根据一个时间点、而是根据一个时间窗口进行核算。不仅如此,核算的需求也适当杂乱,因场景而异,应容许用户自定义函数进行核算。

四、大数据分析平台究竟是什么?

在搭建数据剖析渠道之前,要先清晰事务需求场景以及用户的需求,经过大数据剖析渠道,想要得到哪些有价值的信息,需要接入的数据有哪些,清晰基于场景事务需求的数据渠道要具备的基本的功用,从下至上可分为四个层次:

数据收集层:底层就是各种数据源,主要是对企业底层数据的收集和解析,将零散的数据整合起来,包含企业的核心事务数据、用户数据、日志数据、集团数据等等,一般有传统的ETL离线收集和实时收集两种方式

数据贮存和处理层:有了数据底层的数据,然后依据需求和场景的不同进行数据预处理,贮存到一个合适的持久化贮存层中。

数据剖析层:这里就要用到BI剖析体系。

数据使用层:依据事务需求不同划分出不同类别的使用,主要是对最终的数据进行展现和可视化。

总结来说,企业对数据、功率要求的逐步提高,也给大数据提供了展现能力的渠道,企业构建大数据渠道,归根到底是构建企业的数据财物运营中心,发挥数据的价值,支撑企业的发展。

关于大数据分析平台究竟是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

五、大数据平台提供的最基本的两个功能是什么

最基本的两个功能是:一数据收集;二数据分析归纳。

扩展:

一、它必须容纳海量数据

如果大数据分析平台无法扩展以存储或管理海量数据,那么仅仅提高速度所带来的作用相当有限。大数据分析平台必须能够容纳海量数据。

大规模并行处理是用于扩展分析处理的理想技术,因为它同时利用计算机群集的存储和计算能力。它不仅在性能上有所扩展,而且其处理传入的大量数据流的能力也相应提高。

此外,被设计为用于处理结构化数据的大数据平台使用MPP,可进一步加速处理操作,这是因为已针对分析程序优化了结构化数据,并减少了回答查询所需执行的搜索量。结构化数据库能够更好地了解数据在数据海洋中的位置,并且可以精确地存取数据。

一般来说,非结构化数据库难以扩展到采用列式设计的结构化数据库所能达到的级别。但是,大数据分析平台可能整合有能够提高非结构化数据库的可扩展性和性能的功能。

二、它必须非常快

简单来说,数字时代下,用户不希望在运行查询时长时间地等待结果。他们期望即时得到满足,获得即时结果,而对其他工作负载没有影响。这意味着大数据分析平台必须增强现有应用程序的性能,允许您开发具有挑战性的新分析方法,并提供合理、可预测和经济的横向扩展策略。

从技术角度来看,要满足这些期望,必须结合列式数据库架构(相对于基于行的非并行处理传统数据库)和使用大规模并行处理技术或者说MPP。

理由在于:列式设计可最大限度地减少I/O争用,后者是导致分析处理发生延迟的主要原因。列式设计还可提供极高的压缩率,相比于行式数据库,通常可将压缩率提高四倍或五倍。MPP数据仓库通常按比例线性扩展,这意味着如果您将双节点MPP仓库的空间翻倍,那么可有效将其性能提高一倍。

列式设计和MPP的结合不仅能够大幅提高性能(通常约100到1000倍),还可以实现更低且更透明的定价机制,例如针对每TB的模型而非传统的针对每处理器、每节点、每用户的定价方案。最终结果:性能呈指数级增长,同时大数据分析处理过程的总成本大幅降低。

三、它必须兼容传统工具

如果您的大数据分析平台依赖于“提取、转换、加载”(ETL)工具(如Attunity、Informatica、Syncsort、Talend或Pentaho)或基于SQL的可视化工具(如Logi

Analytics、Looker、MicroStrategy、Qlik、Tableau和Talena),请确保该平台已经过认证,可与所有这些工具而不仅仅是主要供应商的工具搭配使用。此外,确保您使用的所有工具和扩展技术符合最新版本的ANSI

SQL标准(SQL2011)。

四、它必须为数据科学家提供支持

数据科学家在企业IT中拥有着更高的影响力和重要性,因此大数据分析平台应在下述两个关键方面支持数据科学家。首先,新一代数据科学家采用Java、Python和R等工具来执行预测式分析。底层分析数据库应支持和加速创新型预测分析的创建过程。

其次,此平台应有助于将数据科学家的工作与业务目标联系起来。如今,数据科学家的角色常常从统计学家演变而来,后者相对而言更具学术意味,而且通常并不熟悉宏观业务目标。在某些情况下,会导致数据科学家得出的结论可能不完整、不准确或与业务成果无关。同时,商业人士常常乐于让统计学家在封闭的环境中工作,只在需要他们支招时才去找他们。

快速、高效、易于使用和广泛部署的大数据分析平台可以帮助拉近商业人士和技术专家之间的距离。

五、它应提供高级分析功能

根据您的特定使用情况,可能有必要深入查看由大数据分析引擎提供的内置SQL分析功能。您必须从底层查看,以了解究竟提供了何种SQL分析,而不用对该数据执行分析。例如,如果要对从设备获得的数据执行分析(如在物联网中),则需要诸如“时间序列分析”和“差距分析”等分析功能。如果没有这些功能,您可能需要花费时间整理数据或编写自定义代码。

相关推荐

车联网企业国内有哪些?

数据处理 2023-12-23

注册计量师-请教贴

数据处理 2023-12-19

逆光照片怎么处理

数据处理 2023-12-08