2023-01-18 18:30来源:m.sf1369.com作者:宇宇
1、使用“分层聚类”分析;2、选择聚类类别,SPSSAU默认聚为三类;3、结合树状图进行分析,分层聚类出来,具体聚成几个类别较好,需要结合树状图结果及实际数据情况进行分析对比。
聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。注意事项:
1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;
2. K-均值法要求分析人员事先知道样品分为多少类;
3. 对变量的多元正态性,方差齐性等要求较高。应用领域:细分市场,消费行为划分,设计抽样方案等优点:聚类分析模型的优点就是直观,结论形式简明。缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。
数据聚类的步骤如下:
1. 准备数据:选择要聚类的数据,收集数据,清洗数据,准备数据格式等。
2. 确定聚类的类型:可使用层次聚类,K-Means聚类,密度聚类等。
3. 确定聚类数量:可以使用肘部法则(elbow method)来查找最佳聚类数量。
4. 计算聚类中心:选择合适的距离度量,计算每个聚类中心,即每个类别的数据的均值。
5. 进行聚类:将数据根据距离度量分配到各聚类中,以构建聚类模型。
6. 评估聚类结果:使用轮廓系数(silhouette coefficient)来评估每个聚类的质量。
7. 可视化展示:使用可视化工具来查看聚类的结果,如画出聚类结果的散点图。