2023-02-08 16:57来源:m.sf1369.com作者:宇宇
Shark为了实现Hive兼容,在HQL方面重用了Hive中HQL的解析、逻辑执行计划翻译、执行计划优化等逻辑,可以近似认为仅将物理执行计划从MR作业替换成了Spark作业(辅以内存列式存储等各种和Hive关系不大的优化)
1)Excel, 90% 的数据分析功能都可以完成。很多统计、数学如 R, PowerPivot 等都有Excel 插件。缺点就是支持的数据量比较小。
2)SAS, R, SPSS 都属于专业工具,需要统计、数学等方面的知识。
3) Access, SQL, Python, Spark 等都属于数据分析开发工具了,一般群众也不用。
个人愚见,spark还是趋向于离线分析。2G的数据量的实时查询可能mysql就可以了。
作为大数据处理的主流框架之一,Spark在近几年的发展趋势无疑是很好的。Spark继承了第一代计算框架Hadoop MapReduce的优势,专注于计算性能优势的提升,大大提升了大规模数据处理的效率。
Spark是针对超大数据集合的处理而涉及的,基于分布式集群,实现准实时的低延迟数据处理。理论上来时,Spark的计算速度比Hadoop提升了10-100倍。