2023-02-21 13:16来源:m.sf1369.com作者:宇宇
数据分析面试注意事项如下:
1、专业经验
介绍项目经验:
参考STAR原则:即针对Situation(情景)、Task(任务)、Action(行动)和Result(结果)四个维度的追问项目经验,从而深入了解面试者的能力和特质
重点通过面试者具体在何时,在什么样的项目环境、范围中,以什么样的团队分工,用怎样的知识技能经验,具体完成什么任务?并包括对困难的处理,对结果的反思。
2、基本工具:
互联网公司的数据分析师使用Excel+SQL+R/Python的比较多,建议先看下JD上的要求,做好相关的准备。Excel至少要会用数据透视表和vlookup,VBA很有用但在面试中问到的不多,具体看JD要求。对于要求使用SQL的公司,一般会安排笔试或上机测试。也有公司不要求使用SQL,比方说一些BI比较成熟、业务发展比较慢的公司,或者一些使用第三方Saas服务的小公司。统计工具一般要求会一种就可以了,建议使用R或者Python,一方面是因为公司会要求尽量使用开源工具,另一方面可以让面试官进行针对性的提问。如果你使用的是面试官不太了解的工具,就丢掉了一个重要的加分项。对于应届生来说,是加分越多越好,而不是犯的错误越少越好。
3、行业了解
通过让面试者对自己所处行业的分析,以及跨行业的对比,了解面试者是否具备宽阔的视野和对外部环境敏感的分析意识。
其实相对于数据分析技术来说,企业更注重的是分析师的综合能力。这些能力包括快速的学习能力、良好的沟通能力、清晰的逻辑分析能力、高度的概括归纳能力,当然还有最基本的数据分析能力。
所以你们看到数据分析能力是最基本的,这里包括数据分析的知识、思路、算法、模型、工具。
在考察完基本的数据分析能力后,企业其实最关心的不是这个数据分析师会多少种算法、懂得多少个模型。企业应该关心的是数据分析师到底能不能帮你解决实际问题,也就是数据分析的工作到底能不能落地。
所谓的落地就是,分析师能不能发现问题、问题归因、验证假设、提出解决方案、方案的投入产出与决策建议、方案落实的效果分析以及调优、方案的总结和未来项目的风险规避。