主页 > 数据处理 > spark大数据处理技术?

spark大数据处理技术?

2023-05-03 12:23来源:m.sf1369.com作者:宇宇

一、spark大数据处理技术?

作为大数据处理的主流框架之一,Spark在近几年的发展趋势无疑是很好的。Spark继承了第一代计算框架Hadoop MapReduce的优势,专注于计算性能优势的提升,大大提升了大规模数据处理的效率。

Spark是针对超大数据集合的处理而涉及的,基于分布式集群,实现准实时的低延迟数据处理。理论上来时,Spark的计算速度比Hadoop提升了10-100倍。

二、spark快速大数据分析的源码怎么使用

如果你没有这方面的专业知识的话,肯定是没法下手去做的,是需要大数据方面专业的人才才能解决的,必须学过java,linux,mysql,hadoop,spark的工具才能使用,还谈不上熟练的层次呢。柠檬学院大数据。

三、如何从菜鸟成长成spark大数据高手

第一阶段:熟练掌握Scala语言

1,spark框架是采用scala语言写的,精致优雅。想要成为spark高手,你就必须阅读spark源码,就必须掌握scala。 

2,虽然现在的spark可以使用多种语言开发,java,python,但是最快速和支持最好的API依然并将永远是Scala的API,所以必须掌握scala来编写复杂的和高性能的spark分布式程序。 

3尤其是熟练掌握Scala的trait,apply,函数式编程,泛型,逆变,与协变等。

第二阶段:精通spark平台本身提供给开发折的API

1,掌握spark中面向RDD的开发模式,掌握各种transformation和action函数的使用。 

2,掌握Spark中的款依赖和窄依赖,lineage机制。 

3,掌握RDD的计算流程,如Stage的划分,spark应用程序提交给集群的基础过程和Work节点基础的工作原理。

第三阶段:深入Spark内核

此阶段主要是通过Spark框架的源码研读来深入Spark内核部分: 

1,通过源码掌握Spark的任务提交, 

2,通过源码掌握Spark的集群的任务调度, 

3,尤其要精通DAGScheduler,TaskScheduler和Worker节点内部的工作的每一步细节。

第四阶段:掌握Spark上的核心框架的使用

Spark作为云计算大数据时代的集大成者,在实时流式处理,图技术,机器学习,nosql查询等方面具有明显的优势,我们使用Spark的时候大部分时间都是在使用其框架: 

sparksql,spark streaming等 

1,spark streaming是出色的实时流失处理框架,要掌握,DStream,transformation和checkpoint等。 

2,spark sql是离线统计分析工具,shark已经没落。 

3,对于spark中的机器学习和Graphx等要掌握其原理和用法。

第五阶段:做商业级的spark项目

通过一个完整的具有代表性的spark项目来贯穿spark的方方面面,包括项目的框架设计,用到的技术的剖析,开始实现,运维等,完善掌握其中的每一个阶段和细节,以后你就可以从容的面对绝大多数spark项目。

第六阶段:提供spark解决方案

1,彻底掌握spark框架源码的每一个细节, 

2,根据步同的业务场景的需要提供spark在不同场景的解决方案, 

3,根据实际需要,在spark框架基础上经行2次开发,打造自己的spark框架。

四、请教spark通过jdbc读取大量数据

Hadoop(大数据分析领域无可争辩的王者)专注于批处理。这种模型对许多情形(比如为网页建立索引)已经足够,但还存在其他一些使用模型,它们需要来自高度动态的来源的实时信息。

相关推荐

车联网企业国内有哪些?

数据处理 2023-12-23

注册计量师-请教贴

数据处理 2023-12-19

逆光照片怎么处理

数据处理 2023-12-08