主页 > 数据处理 > 盘点5种大数据处理的典型工具

盘点5种大数据处理的典型工具

2023-05-04 05:11来源:m.sf1369.com作者:宇宇

盘点5种大数据处理的典型工具

1、HDFS

Hadoop分布式文件体系(Hadoop Distributed File System,HDFS)现在是Apache Hadoop项目的一个子项目,与已有的分布式文件体系有许多相似之处。

此外,作为专门针对商业化硬件(commodity hardware)规划的文件体系,HDFS的独特之处也很明显:指汪隐首要其具有很唯厅高的容错性,其次能够布置在较为廉价的硬件上,最后能够供给高吞吐量的应用数据拜访能力。

2、Sqoop

Sqoop是一个在Hadoop和联系数据库服务器之间传送数据的东西,便利大量数据的导入导出工作,其支持多种类型的数据存储软件。

Sqoop的中心功能为数据的导入和导出。

导入数据:从诸如MySQL、SQL Server和Oracle等联系数据库将数据导入到Hadoop下的HDFS、Hive和HBase等数据存储体系。 导出数据:从Hadoop的文件体系中将数据导出至联系数据库。

3、Flume

Flume是由Hadoop生态体系中闻名的软件公司Cloudera于2011年发布,该软件能够支持分布式海量日志的采集、集成与传输,以实时的方式从数据发送方获取数据,并传陵雹输给数据接收方。

Flume具有两个显著的特点:可靠性和可扩展性。

针对可靠性,其供给了从强到弱的三级保障,即End-to-end、Store on failure和Best effort。 针对可扩展性,其选用三层的体系结构,即Agent、Collector和Storage,每层都能够在水平方向上进行扩展。

4、Scribe

Scribe是由Facebook开发的分布式日志体系,在Facebook内部现已得到了广泛的应用。Scribe能够针对坐落不同数据源的日志信息进行收集,然后存储至某个一致的存储体系,这个存储体系可所以网络文件体系(Network File System,NFS),也可所以分布式文件体系。

5、HBase

HBase的全称为Hadoop Database,是基于谷歌BigTable的开源实现,其运用Hadoop体系结构中的HDFS作为根本的文件体系。谷歌根据BigTable的理念规划实现了谷歌文件体系GFS,可是该计划未开源。HBase能够称为BigTable的山寨版,是开源的。

关于盘点5种大数据处理的典型工具,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

大数据分析需要哪些工具

稍微整理了下常用到的大数据分析工具,看下能不能帮到你

1.专业的大数据分析工具

2.各种Python数据可视化第三方库

3.其它语言的数据可视化框架

一、专业的大数据分析工具

1、FineReport

FineReport是一款纯Java编写的、集数据展示(报表)和数据录入(表单)功能于一身的企业级web报表工具,只需要简单的拖拽操作便可以设计复杂的中国式报表,搭建数据决策分析系统。

2、FineBI

FineBI是新一代自助大数据分析的商业智能产品,提供了从数据准备、自助数据处理、数据分析与挖掘、数据可视化于一体的完整解决方案,也是我比较推崇的可视化工具之一。

FineBI的使用感同Tableau类似,都主张可视化的探索性分析,有点像加强版的数据透视表。上手简单,可视化库丰富。可以充当数据报表的门户,也可以充当各业务分析的平台。

二、Python的数据可视化第三方库

Python正慢慢地成为数据分析、数据挖掘领域的主流语言之一。在Python的生态里,很多开发者们提供了非常丰富的、用于各种场景的数据可视化第三方库。这些第三方库可以让我们结合Python语言绘制出漂亮的图表。

1、pyecharts

Echarts(下面会提到)是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。当Python遇上了Echarts,pyecharts便诞生了,它是由chenjiandongx等一群开发者维护的Echarts Python接口,让我们可以通过Python语言绘制出各种Echarts图表。

2、Bokeh

Bokeh是一款基于Python的交互式数据可视化工具,它提供了优雅简洁的方法来绘制各种各样的图形,可以高性能地可视化大型数据族顷茄集以兆察及流数据,帮助我们制作交互式图表、可视化仪表板等。

三、其他数据可视化工具

1、Echarts

前面说过了,Echarts是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。

大家都知道去年春节以及近期央视大规划报道的百度大数据产品,如百度迁徙、乎首百度司南、百度大数据预测等等,这些产品的数据可视化均是通过ECharts来实现的。

2、D3

D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。

一般做大数据分析,首先会使用到大数据数据库,比如MongoDB、GBase等数据库。其次会用数据仓库工具,对数据进行清洗、转换、处理,得到有价值的数据。然后使用数据建模工具进行建模。最后使用大数据工具,进行可视化分析。

根据以上的描述,我们按过程对用到的工具进行讨论。

1、 大数据工具:数据存储和管理工具

大数据完全始于数据存储,也就是说始于大数据框架Hadoop。它是Apache基金简晌会运行的一种开源软件框架,用于在大众化计算机集群上分布式存储非常大的数据集。由于大数据需要大量的信息,存储至关重要。但除了存储外,还需要某种方式将所有这些数据汇集成某种格式化/治理结构,从而获得洞察力。

2、 大数据工具:数据清理工具

使用数据仓库工具-Hive。Hive是基于Hadoop分布式文件系统的,它的数据存储在HDFS中。Hive本身是没有专门的数据存储格式,也没有为数据建立索引,只需要在创建表的时候告诉Hive数据中的列分隔符和行分隔符,Hive就可以解析数据。

3、 大数据工具:数据建模工具

SPSS:主要用于数据建模工作,功能稳定且强大,能够满足中小企业在业务模型建立过程中的需求。

4、 大数据工具:数据可视化分析工具

亿信华辰一站式数据分析平台ABI,对上述所说的工具,在该平台上都有。亿信ABI提供ETL数据处理、数纯咐蠢据建模以及一系列的数据分析服务,提供的数据分析工具丰富:除了中国式复杂报表、dashboard、大屏报表外,ABI还支持自助式分析,包括做陪拖拽式多维分析、看板和看板集,业务用户通过简单拖拽即可随心所欲的进行探索式自助分析。同时,类word即席报告、幻灯片报告,让汇报展示更加出彩。

说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:

(1)SQL数据库的基本操作,会基本的数据管理

(2)会用Excel/SQL做基本的数据分析和展示

(3)会用脚本语言进行数据分析,Python or R

(4)有获取外部数据的能力,如爬虫

(5)会基本的数据可视化技能,能撰写数据报告

(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等

对于厅行学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。

1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。

2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。

3、学习数据分析工具,软件结合案宽返列的实际应用,关于数据分析主流软件扮巧哗有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。

4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。

大数据分析是指对规模巨大的数据进行分析,以达到积极主动地预测需求;缓冲风险并且减少欺诈;优化、改善客户体验等目的。

大数据分析涉及到的工具一般有以下这些:

前端纯氏展现:

用于展现分析的前端开源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。

用于展现态敏分析商用分析工具有Style Intelligence、RapidMiner Radoop、Cognos, BO, Microsoft Power BI, Oracle,Microstrategy,QlikView、帆裤枝 Tableau 。

国内的有BDP,国云数据(大数据魔镜),思迈特,FineBI等等。

数据仓库:

Teradata AsterData, EMC GreenPlum, HP Vertica 等等。

数据集市:

QlikView、 Tableau 、Style Intelligence等等。

网页链接

Java :只要了bai解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。

Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。

Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单

Oozie:既然学会Hive了,我相笑昌信你一定需要这个东西,它可以帮你管理你的Hive或者燃升贺MapReduce、Spark脚本,还能检查你的程序是否执行正确。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它皮派能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。

Kafka:这是个比较好用的队列工具。

Spark:它是用来弥补基于MapReduce处理数据速度上的缺点

相关推荐

车联网企业国内有哪些?

数据处理 2023-12-23

注册计量师-请教贴

数据处理 2023-12-19

逆光照片怎么处理

数据处理 2023-12-08