2022-03-20 06:12来源:m.sf1369.com作者:宇宇
一、实体建模 的概念 1.实体建模实体建模 的的必要性 必要性 2.实体建模 实体建模 的概念 的概念 不仅描述了实体的全部几何信息,而且定义了所有点、线、 面、体的拓扑信息。 实体建模的标志,是在计算机内部以实体描述客观事物。 利用这样的系统,一方面可以提供实体完整的信息,另一 方面、可以实现对可见边的判断,具有消隐的功能。实体 建模是通过定义基本体素,利用体素的集合运算或基本变 形操作实现的,其特点在于覆盖三维立体的表面与其实体 同时生成。由于实体建模能够定义三维物体的内部结构形 状。因此,能完整地描述物体的所有几何信息,是当前普 遍采用的建模方法。 二、实体建模的方法 按照实体生成的方法不同,可分为体素法、扫描法 等几种 体素法是通过基本体素的集合运算构造几何实体的建模方法 有些物体的表面形状较为复杂,难于通过定义基本体素加以描述,可以定义基体,利用基本的变形操 作实现物体的建模,这种构造实体的方法称为扫描 法。扫描法又可分为平面轮廓扫描和整体扫描两种。 实体模型和线框或表面模型的区别:表面模型所 描述的面是孤立的面,没有方向,没有与其它的 面或体的关联;而实体模型提供了面和体之间的 拓扑关系。而且记录了全部点、线、面、体的拓 扑信息,这是实体模型与线框或表面模型的根本 区别。详细 三、三维实体建模中的计算机内部表示 计算机内部表示三维实体模型的方法有很多,并且正向多重模式发 展。常见的有边界表示法、构造实体几何法、混合表示法(即边界 表示法与构造实体几何法混合模式)、空间单元表示法等。 边界表示法简称B—Rep法,它的基本思想是,一个形体可以通过 包容它的面来表示,而每—个面又可以用构成此面的边描述.边 通过点.点通过三个坐标值来定义。详细 按照实体、面、边、顶 点描述,在计算机内部存贮了这种网状的数据结构 1.边界表示法 (Boundary Representation) 边界表示法的优点在于含有较多的关于面、边、点及其相互关系的 信息,这些信息对于工程图绘制及图形显示都是十分重要的,并且 易于同二维绘图软件衔接和同曲面建模软件联合应用。 边界表示法也有其缺点,由于它的核心是面.因而对几何物体的整 体的描述能力相对较差,无法提供关于实体生成过程的信息。 例如一个三维物体最初是由哪些基本体素,经过哪种集合运算拼合 而成的,也无法记录组成几何体的基本体素的原始数据。同时描述 所需信息量较大、并有信息冗余。 构造实体几何(Constructive Solid Geometry)表示法 原理:构造实体几何法简称CSG法 ,通过基本体 素及它们的集合运算(如并、交、差)进行表示的, 即通过布尔运算生成二叉树结构进行表示。 CSC法与B-Rep法的主要区别在于存储的主要是 物体的生成过程,所以也称为过程模型。详细 特点: 与边界表示法相比,CSG法构成实体几何模型相当简单,生成速 度快.处理方便,无冗余信息,与机械装配的方式非常类似,而且 能够详细地记录构成实体的原始特征及参数,对于同一形体,CSG 法数据量只有B-Rep法的1/10。详细 CSG表示法的数据结构通常有两套数据结构一个是由基本体素以及集合运算和几何变换所生成实体的二叉树的 数据结构,另一套是描述这些体素的位置及其体、面、边、点的信 3.混合模式CSG的数据结构可以方便的转换成其它的数据结构,但 与此相反,其它数据结构转换成CSG数据结构却很困难, 甚至有些情况下是无法实现的。 不能存储最终实体的更详细的几何信息。必须经过运 算转化为边界表示法(B-REP)后,才能对实体的点、边、 面等信息进行查询和编辑。 采用CSG法可以方便地实现对实体的局部修改。详细 原理:混合模式建立在边界表示法与构造立体几何法的基础之上,在同一系统中,将两者结台起来,共同表示 实体。 对CAD/CAM集成系统来说,单纯的几何模型不能满足要求, 往往需要在几何模型的基础上附加制造信息,构造产品模 型。人们在实践中总结出B—Rep法和CSG法各自的持点,试 图在系统中采用混合方法对物体进行描述。详细 方法:以CSG法为系统外部模型,以B—Rep法为内部模型, CSG法适于做用户接口,方便用户输入数据,定义体素及确定 集合运算类型,而在计算机内部转化为B—Rep的数据模型,以 便存贮物体更详细的信息。这相当于在CSG树结构的节点上扩 充边界法的数据结构.可以达到快速描述和操作模型的目的 特点:混合模式是在CSG基础上的逻辑扩展,起主导 作用的是CSG结构,结合B—Rep的优点可以完整地表达 物体的几何、拓扑信息,便于构造产品模型,使造型技 术大大前进了一步。 4.空间单元表示法 空间单元表示法是通过一系列空间单元构成的图形来表示物 体的一种方法。这些单元(Cell)都是具有一定大小的立方 基本思想:是将一个三维实体有规律地分割为有限个单元,这些单元均为具有一定大小的立方体;在计算机内部通过定义各 个单元的位置是否填充来建立整个实体的数据结构。 空间单元表示法数据结构通常是四叉 四叉树常用作二维物体描述对三维实体需采用八叉树。详细 空间单元表示法 的特点 空间单元表示法是一种数字化的近似表示法,用来描述比 较复杂的。尤其是内部有孔、或具有凸凹等不规则表面的实 体。显然,所分割单元的大小、数量均影响实体模型的精度, 数目越多,精度越高,相应的系统处理数据的时间也越长, 存贮这些数据所占的空间也越大。 由于这种方法是空间上的近似,它并不能表达一个物体任 意两部分之间的关系,也没有关于点、线、面的概念。但是 它的算法比较简单,在CAD/CAM系统中可以作为物理特性 计算和有限元计算的基础。