2023-02-20 09:20来源:m.sf1369.com作者:宇宇
我觉得大数据的最主要的特征就是大吧,大到什么程度能达到所有的枝枝节节的细枝末节的邓乃格算进去,你只有你想不到的,没有你她做不不到的
目前加米谷大数据培训的课程约有两种:
1、大数据开发:Ja-va、大数据基础、Hadoop体系、Scala、kafka、Spark等内容;
2、数据分析与挖掘:Python、关系型数据库MySQL、文档数据库MongoDB、内存数据库Redis、数据处理、数据分析等。
推荐Rice大学的那门python课,Rice大学的课程总共有3门,现在貌似拆解成6门了;每门课8周时间,按照由浅入深的顺序来的。第一门课是Python基础,介绍了Python的基础语法;第二门课是计算基础,介绍了一些稍微复杂一点的语法和数据处理;第三门课是算法思考,介绍了一些常用的算法;并且还用到了numpy, matlabplot库等。
1、为什么用Python做数据分析:
首先因为Python可以轻松地集成C、C++、Fortran代码,一些底层用C写的算法封装在python包里后性能非常高效。并且Python与Ruby都有大量的Web框架,因此用于网站的建设,另一方面个人觉得因为Python作为解释性语言相对编译型语言更为简单,可以通过简单的脚本处理大量的数据。而组织内部统一使用的语言将大大提高工作效率。
2、为什么用R做数据分析:
R的优势在于有包罗万象的统计函数可以调用,特别是在时间序列分析方面(主要用在金融分析与趋势预测)无论是经典还是前沿的方法都有相应的包直接使用;相比python在这方面贫乏不少。另外R语言具有强大的可视化功能,一个散点图箱线图可以用一条程序搞定,相比Excel更加简单。
在使用环境方面,SAS在企业、政府及军事机构使用较多,因其权威认证;SPSS、R大多用于科研机构,企业级应用方面已有大量的商业化R软件,同时可结合(具体怎么结合,尚未搞明白)Hadoop进行数据挖掘。